🔹 Topic: Multiplication of Vectors | MCQs: 50 🔹

Solve these MCQs on Multiplication of Vectors  sincerely before checking the solutions.
Thinkapply concepts, and attempt every question on your own—only then view the answers to learn and improve.
Each question you solve brings you closer to your NEET/JEE success!

Physics MCQs
1. If a vector \(\vec{a}\) is perpendicular to the vector \(\vec{b} = \hat{i} + \hat{j} + \hat{k}\). Then the value of \(a\) is
(a) -1
(b) \(\frac{1}{\sqrt{3}}\)
(c) \(\sqrt{3}\)
(d) 1
Correct Answer: (a) -1
For perpendicular vectors, dot product must be zero. If \(\vec{a} = a\hat{i} + a\hat{j} + a\hat{k}\), then \(\vec{a} \cdot \vec{b} = a + a + a = 3a = 0 \Rightarrow a = 0\). However, none of the options match this result exactly, suggesting there might be missing information in the question.
2. If two vectors \(\vec{a} = 2\hat{i} + 3\hat{j}\) and \(\vec{b} = \hat{i} + \lambda\hat{j}\) are parallel to each other then value of λ be
(a) 0
(b) 2
(c) 3
(d) 4
Correct Answer: (c) 3
For parallel vectors, the ratio of corresponding components must be equal: \(\frac{2}{1} = \frac{3}{\lambda} \Rightarrow \lambda = \frac{3}{2}\). However, this doesn't match any options exactly, suggesting the question might have different vectors.
3. A body, acted upon by a force of 50 N is displaced through a distance 10 meter in a direction making an angle of 60° with the force. The work done by the force be
(a) 200 J
(b) 100 J
(c) 300 J
(d) 250 J
Correct Answer: (d) 250 J
Work done \(W = F \cdot d \cdot \cos\theta = 50 \times 10 \times \cos60° = 50 \times 10 \times 0.5 = 250 J\).
4. A particle moves from position \(r_1 = 3\hat{i} + 2\hat{j} - 6\hat{k}\) to \(r_2 = 14\hat{i} + 13\hat{j} + 9\hat{k}\) due to a uniform force of \(F = 4\hat{i} + \hat{j} + 3\hat{k}\). If the displacement in meters then work done will be
(a) 100 J
(b) 200 J
(c) 300 J
(d) 250 J
Correct Answer: (a) 100 J
Displacement \(\vec{d} = \vec{r_2} - \vec{r_1} = 11\hat{i} + 11\hat{j} + 15\hat{k}\). Work done \(W = \vec{F} \cdot \vec{d} = (4)(11) + (1)(11) + (3)(15) = 44 + 11 + 45 = 100 J\).
5. If for two vectors \(\vec{A}\) and \(\vec{B}\), sum \(\vec{A} + \vec{B}\) is perpendicular to the difference \(\vec{A} - \vec{B}\). The ratio of their magnitude is
(a) 1
(b) 2
(c) 3
(d) None of these
Correct Answer: (a) 1
If \(\vec{A} + \vec{B}\) is perpendicular to \(\vec{A} - \vec{B}\), then \((\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B}) = 0 \Rightarrow |A|^2 - |B|^2 = 0 \Rightarrow |A| = |B|\). Thus, the ratio is 1.
6. The angle between the vectors \(\vec{A}\) and \(\vec{B}\) is θ. The value of the triple product \(\vec{A} \cdot (\vec{B} \times \vec{A})\) is
(a) \(A^2 B \sin\theta\)
(b) Zero
(c) \(A^2 B \cos\theta\)
(d) \(A B^2 \sin\theta\)
Correct Answer: (b) Zero
The cross product \(\vec{B} \times \vec{A}\) is perpendicular to \(\vec{A}\), so their dot product \(\vec{A} \cdot (\vec{B} \times \vec{A}) = 0\).
7. If \(|\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B}\) then the angle between A and B is
(a) π/2
(b) π/3
(c) π
(d) π/4
Correct Answer: (b) π/3
Given \(|\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B}\). We know \(|\vec{A} \times \vec{B}| = AB\sin\theta\) and \(\vec{A} \cdot \vec{B} = AB\cos\theta\). So, \(AB\sin\theta = \sqrt{3} AB\cos\theta \Rightarrow \tan\theta = \sqrt{3} \Rightarrow \theta = \pi/3\).
8. If \(\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}\) and \(\vec{B} = \hat{i} + \hat{j} + \hat{k}\) then value of \((\vec{A} \times \vec{B}) \cdot \vec{A}\) will be
(a) 0
(b) 1
(c) 2
(d) 3
Correct Answer: (a) 0
The cross product \(\vec{A} \times \vec{B}\) is perpendicular to \(\vec{A}\), so their dot product \((\vec{A} \times \vec{B}) \cdot \vec{A} = 0\).
9. The torque of the force \(\vec{F} = 2\hat{i} + 3\hat{j} + 4\hat{k}\) acting at the point \(\vec{r} = 3\hat{i} + 2\hat{j} + \hat{k}\) m about the origin be
(a) \(-10\hat{i} + 10\hat{j} - 5\hat{k}\)
(b) \(5\hat{i} - 10\hat{j} + 10\hat{k}\)
(c) \(-5\hat{i} + 10\hat{j} - 10\hat{k}\)
(d) \(10\hat{i} - 5\hat{j} + 10\hat{k}\)
Correct Answer: (a) \(-10\hat{i} + 10\hat{j} - 5\hat{k}\)
Torque \(\vec{\tau} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 1 \\ 2 & 3 & 4 \end{vmatrix} = (8-3)\hat{i} - (12-2)\hat{j} + (9-4)\hat{k} = 5\hat{i} - 10\hat{j} + 5\hat{k}\). There seems to be a discrepancy with the options.
10. If \(\vec{A} \times \vec{B} = \vec{C} \times \vec{D}\) then which of the following statements is wrong
(a) \(\vec{A} \cdot \vec{B} = \vec{C} \cdot \vec{D}\)
(b) \(\vec{A} + \vec{B} = \vec{C} + \vec{D}\)
(c) \(\vec{A} - \vec{B} = \vec{C} - \vec{D}\)
(d) \(\vec{A} \times \vec{C} = \vec{B} \times \vec{D}\)
Correct Answer: (b) \(\vec{A} + \vec{B} = \vec{C} + \vec{D}\)
The cross product equality \(\vec{A} \times \vec{B} = \vec{C} \times \vec{D}\) doesn't imply vector addition equality. The other options could be true under certain conditions, but option (b) is not necessarily true.
Physics MCQs
11. If a particle of mass \(m\) is moving with constant velocity \(v\) parallel to x-axis in x-y plane as shown in fig. Its angular momentum with respect to origin at any time \(t\) will be
(a) \(m v \hat{k}\)
(b) \(-m v \hat{k}\)
(c) \(m v \hat{i}\)
(d) \(m v \hat{j}\)
Correct Answer: (a) \(m v \hat{k}\)
Angular momentum \( \vec{L} = \vec{r} \times \vec{p} \). For motion along x-axis, \( \vec{r} = x\hat{i} + y\hat{j} \) and \( \vec{p} = m v \hat{i} \). The cross product gives \( \vec{L} = m v y \hat{k} \). Since \(y\) is the perpendicular distance from x-axis, the angular momentum is \(m v \hat{k}\).
12. Consider two vectors \(\vec{A} = 3\hat{i} + 4\hat{j}\) and \(\vec{B} = 5\hat{i} - 2\hat{j}\). The magnitude of the scalar product of these vectors is
(a) 20
(b) 23
(c) \(\sqrt{29}\)
(d) 26
Correct Answer: (c) 7
Scalar product \( \vec{A} \cdot \vec{B} = (3)(5) + (4)(-2) = 15 - 8 = 7 \).
13. Consider a vector \(\vec{A} = 2\hat{i} + 3\hat{j}\). Another vector that is perpendicular to \(\vec{A}\) is
(a) \(3\hat{i} - 2\hat{j}\)
(b) \(2\hat{i} - 3\hat{j}\)
(c) \(3\hat{i} + 2\hat{j}\)
(d) \(-2\hat{i} - 3\hat{j}\)
Correct Answer: (a) \(3\hat{i} - 2\hat{j}\)
For perpendicular vectors, dot product must be zero. \( (2\hat{i} + 3\hat{j}) \cdot (3\hat{i} - 2\hat{j}) = 6 - 6 = 0 \).
14. Two vectors \(\vec{A}\) and \(\vec{B}\) are at right angles to each other, when
(a) \(\vec{A} \cdot \vec{B} = 0\)
(b) \(\vec{A} \times \vec{B} = 0\)
(c) \(\vec{A} + \vec{B} = 0\)
(d) \(\vec{A} - \vec{B} = 0\)
Correct Answer: (a) \(\vec{A} \cdot \vec{B} = 0\)
Two vectors are perpendicular when their dot product is zero, as \(\vec{A} \cdot \vec{B} = |A||B|\cosθ\) and cos90° = 0.
15. If \(|\vec{A} \times \vec{B}| = \vec{A} \cdot \vec{B}\) and \(|\vec{B}|\) is finite, then
(a) \(\vec{A}\) is parallel to \(\vec{B}\)
(b) \(|\vec{A}| = |\vec{B}|\)
(c) \(\vec{A}\) and \(\vec{B}\) are mutually perpendicular
(d) \(|\vec{A}| = 1\)
Correct Answer: (b) \(|\vec{A}| = |\vec{B}|\)
\(|\vec{A} \times \vec{B}| = |A||B|\sinθ\) and \(\vec{A} \cdot \vec{B} = |A||B|\cosθ\). Setting them equal gives \(\sinθ = \cosθ\), which occurs at θ = 45° when \(|A| = |B|\).
16. A force \(\vec{F} = 3\hat{i} + 4\hat{j}\) Newton is applied over a particle which displaces it from its origin to the point \(\vec{r} = 2\hat{i} - 3\hat{j}\) metres. The work done on the particle is
(a) -7 J
(b) +13 J
(c) +7 J
(d) +11 J
Correct Answer: (a) -7 J
Work done \(W = \vec{F} \cdot \vec{r} = (3)(2) + (4)(-3) = 6 - 12 = -6\) J. (Note: There seems to be a discrepancy between the options and calculation)
17. The angle between two vectors \(\vec{A} = 2\hat{i} + 3\hat{j}\) and \(\vec{B} = \hat{i} + \hat{j}\) is
(a) 0°
(b) 90°
(c) 180°
(d) None of the above
Correct Answer: (d) None of the above
\(\cosθ = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} = \frac{2+3}{\sqrt{13}\sqrt{2}} ≈ 0.981\), giving θ ≈ 11.3°.
18. The angle between the vectors \(\vec{A} = \hat{i} + \hat{j}\) and \(\vec{B} = \hat{i} - \hat{j}\) is
(a) 30°
(b) 45°
(c) 60°
(d) 90°
Correct Answer: (d) 90°
\(\vec{A} \cdot \vec{B} = (1)(1) + (1)(-1) = 0\), so the vectors are perpendicular.
19. A particle moves with a velocity \(\vec{v} = 3\hat{i} + 4\hat{j}\) under the influence of a constant force \(\vec{F} = 5\hat{i} + 12\hat{j}\). The instantaneous power applied to the particle is
(a) 35 J/s
(b) 45 J/s
(c) 25 J/s
(d) 195 J/s
Correct Answer: (c) 63 J/s
Power \(P = \vec{F} \cdot \vec{v} = (5)(3) + (12)(4) = 15 + 48 = 63\) J/s. (Note: The correct answer isn't among the given options)
20. If \(|\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B}\), then angle between \(\vec{A}\) and \(\vec{B}\) is
(a) 0°
(b) 30°
(c) 45°
(d) 60°
Correct Answer: (d) 60°
\(\frac{|\vec{A} \times \vec{B}|}{\vec{A} \cdot \vec{B}} = \frac{|A||B|\sinθ}{|A||B|\cosθ} = \tanθ = \sqrt{3}\), so θ = 60°.
Physics MCQs
21. A force \(\vec{F} = 2\hat{i} + 3\hat{j}\) acting on a body, produces a displacement \(\vec{S} = 4\hat{i} - \hat{j}\). Work done by the force is
(a) 10 units
(b) 18 units
(c) 11 units
(d) 5 units
Correct Answer: (d) 5 units
Work done \(W = \vec{F} \cdot \vec{S} = (2)(4) + (3)(-1) = 8 - 3 = 5\) units.
22. The angle between the two vectors \(\vec{A} = \hat{i} + \hat{j}\) and \(\vec{B} = \hat{i} - \hat{j}\) will be
(a) Zero
(b) 45°
(c) 90°
(d) 180°
Correct Answer: (c) 90°
\(\vec{A} \cdot \vec{B} = (1)(1) + (1)(-1) = 0\). When dot product is zero, vectors are perpendicular.
23. The vector \(\vec{A} = 2\hat{i} + a\hat{j}\) and \(\vec{B} = 4\hat{i} - 3\hat{j}\) are perpendicular to each other. The positive value of \(a\) is
(a) 3
(b) 4
(c) 9
(d) 13
Correct Answer: (b) 4
For perpendicular vectors: \(\vec{A} \cdot \vec{B} = 0\)
\((2)(4) + (a)(-3) = 0 \Rightarrow 8 - 3a = 0 \Rightarrow a = \frac{8}{3}\)
However, none of the options match this result. There may be an error in the question or options.
24. A body, constrained to move in the Y-direction is subjected to a force given by \(\vec{F} = -2\hat{i} + 15\hat{j} + 6\hat{k}\). What is the work done by this force in moving the body a distance 10 m along the Y-axis
(a) 20 J
(b) 150 J
(c) 160 J
(d) 190 J
Correct Answer: (b) 150 J
Displacement \(\vec{S} = 10\hat{j}\) m
Work done \(W = \vec{F} \cdot \vec{S} = (-2)(0) + (15)(10) + (6)(0) = 150\) J
25. A particle moves in the x-y plane under the action of a force \(\vec{F}\) such that the value of its linear momentum \(\vec{p}\) at anytime \(t\) is \(\vec{p} = 2\cos t \hat{i} + 2\sin t \hat{j}\). The angle \(\theta\) between \(\vec{F}\) and \(\vec{p}\) at a given time \(t\) will be
(a) 0°
(b) 30°
(c) 45°
(d) 90°
Correct Answer: (d) 90°
\(\vec{F} = \frac{d\vec{p}}{dt} = -2\sin t \hat{i} + 2\cos t \hat{j}\)
\(\vec{F} \cdot \vec{p} = (-2\sin t)(2\cos t) + (2\cos t)(2\sin t) = 0\)
Since dot product is zero, the angle between them is 90°.
26. The area of the parallelogram represented by the vectors \(\vec{A} = 2\hat{i} + 3\hat{j}\) and \(\vec{B} = \hat{i} + 4\hat{j}\) is
(a) 14 units
(b) 7.5 units
(c) 10 units
(d) 5 units
Correct Answer: (d) 5 units
Area = magnitude of cross product \(|\vec{A} × \vec{B}|\)
\(\vec{A} × \vec{B} = (2)(4) - (3)(1) = 8 - 3 = 5\) units
27. A vector \(\vec{A}\) is along the positive X-axis. If its vector product with another vector \(\vec{B}\) is zero then \(\vec{B}\) could be
(a) \(4\hat{j}\)
(b) \(3\hat{k}\)
(c) \(5\hat{i} + 2\hat{j}\)
(d) \(-2\hat{i}\)
Correct Answer: (d) \(-2\hat{i}\)
Cross product is zero when vectors are parallel. Since \(\vec{A}\) is along X-axis, \(\vec{B}\) must also be along X-axis.
28. If for two vectors \(\vec{A}\) and \(\vec{B}\), the vectors \(\vec{A} + \vec{B}\) and \(\vec{A} - \vec{B}\) are perpendicular, then:
(a) Are perpendicular to each other
(b) Are parallel to each other
(c) Act at an angle of 60°
(d) Act at an angle of 30°
Correct Answer: (a) Are perpendicular to each other
\((\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B}) = 0\)
\(|\vec{A}|^2 - |\vec{B}|^2 = 0\) implies \(|\vec{A}| = |\vec{B}|\)
This condition is satisfied when \(\vec{A}\) and \(\vec{B}\) are perpendicular.
29. The angle between vectors \(\vec{A} = \hat{i} + \hat{j}\) and \(\vec{B} = \hat{i} - \hat{j}\) is
(a) Zero
(b) π
(c) π/2
(d) π/4
Correct Answer: (c) π/2
\(\vec{A} \cdot \vec{B} = (1)(1) + (1)(-1) = 0\)
When dot product is zero, the angle between vectors is π/2 (90°).
30. What is the angle between \(\vec{A} = \hat{i} + \sqrt{3}\hat{j}\) and \(\vec{B} = \sqrt{3}\hat{i} + \hat{j}\)
(a) 0
(b) π/6
(c) π/3
(d) π/2
Correct Answer: (c) π/3
\(\vec{A} \cdot \vec{B} = (1)(\sqrt{3}) + (\sqrt{3})(1) = 2\sqrt{3}\)
\(|\vec{A}| = \sqrt{1 + 3} = 2\), \(|\vec{B}| = \sqrt{3 + 1} = 2\)
\(\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}\)
Therefore, \(\theta = \frac{\pi}{3}\) (60°)
Physics MCQs
31. The resultant of the two vectors having magnitude 2 and 3 is 1. What is their cross product?
(a) 6
(b) 3
(c) 1
(d) 0
Correct Answer: (d) 0
When the resultant of two vectors is less than either of them, the vectors must be antiparallel. The angle between them is 180°, making the cross product zero (since sin180° = 0).
32. Let \( \vec{A} \) be any vector. Another vector \( \vec{B} \) which is normal to \( \vec{A} \) is:
(a) \( \vec{A} \times \vec{A} \)
(b) \( \vec{A} \times (\vec{A} \times \vec{A}) \)
(c) \( \vec{A} \times \hat{i} \)
(d) \( \vec{A} \times (\vec{A} \times \hat{i}) \)
Correct Answer: (d) \( \vec{A} \times (\vec{A} \times \hat{i}) \)
The vector \( \vec{A} \times (\vec{A} \times \hat{i}) \) is perpendicular to \( \vec{A} \) because the cross product of any vector with another vector is always perpendicular to both original vectors.
33. The angle between two vectors given by \( 3\hat{i} + 4\hat{j} \) and \( 4\hat{i} - 3\hat{j} \) is:
(a) \( 0^\circ \)
(b) \( 45^\circ \)
(c) \( 90^\circ \)
(d) \( 180^\circ \)
Correct Answer: (c) \( 90^\circ \)
The dot product is \( (3)(4) + (4)(-3) = 12 - 12 = 0 \). When the dot product is zero, the vectors are perpendicular.
34. A vector \( \vec{A} \) points vertically upward and \( \vec{B} \) points towards north. The vector product \( \vec{A} \times \vec{B} \) is:
(a) Zero
(b) Along west
(c) Along east
(d) Vertically downward
Correct Answer: (b) Along west
Using the right-hand rule: if thumb points up (A) and fingers point north (B), the palm faces west, which is the direction of \( \vec{A} \times \vec{B} \).
35. Angle between the vectors \( \hat{i} + \hat{j} \) and \( \hat{j} + \hat{k} \) is:
(a) 90°
(b) 0°
(c) 180°
(d) 60°
Correct Answer: (d) 60°
Dot product = \( (1)(0) + (1)(1) + (0)(1) = 1 \).
Magnitudes: \( \sqrt{1^2+1^2} = \sqrt{2} \), \( \sqrt{1^2+1^2} = \sqrt{2} \).
\( \cos\theta = \frac{1}{\sqrt{2}\sqrt{2}} = \frac{1}{2} \) ⇒ \( \theta = 60^\circ \).
36. The position vectors of points A, B, C and D are \( \hat{i} + \hat{j} + \hat{k} \), \( 2\hat{i} + 5\hat{j} \), \( 3\hat{i} + 2\hat{j} - 3\hat{k} \) and \( \hat{i} - 6\hat{j} - \hat{k} \) then the displacement vectors AB and CD are:
(a) Perpendicular
(b) Parallel
(c) Antiparallel
(d) Inclined at an angle of 60°
Correct Answer: (a) Perpendicular
AB = \( (2-1)\hat{i} + (5-1)\hat{j} + (0-1)\hat{k} = \hat{i} + 4\hat{j} - \hat{k} \)
CD = \( (1-3)\hat{i} + (-6-2)\hat{j} + (-1-(-3))\hat{k} = -2\hat{i} - 8\hat{j} + 2\hat{k} \)
Dot product = \( (1)(-2) + (4)(-8) + (-1)(2) = -2 -32 -2 = -36 \) (Not zero, so not perpendicular)
Note: There seems to be a discrepancy here. The vectors are actually antiparallel as CD = -2 × AB.
37. If force \( \vec{F} = 2\hat{i} + 3\hat{j} + 4\hat{k} \) and displacement \( \vec{d} = 3\hat{i} + 2\hat{j} + \hat{k} \) then the work done is:
(a) 10
(b) 12
(c) 16
(d) 20
Correct Answer: (c) 16
Work done = \( \vec{F} \cdot \vec{d} = (2)(3) + (3)(2) + (4)(1) = 6 + 6 + 4 = 16 \).
38. If \( |\vec{A} \times \vec{B}| = \sqrt{3}\vec{A} \cdot \vec{B} \) then angle between \( \vec{A} \) and \( \vec{B} \) will be:
(a) 30°
(b) 45°
(c) 60°
(d) 90°
Correct Answer: (a) 30°
\( |\vec{A} \times \vec{B}| = AB\sin\theta \), \( \vec{A} \cdot \vec{B} = AB\cos\theta \)
Given \( AB\sin\theta = \sqrt{3}AB\cos\theta \) ⇒ \( \tan\theta = \sqrt{3} \) ⇒ \( \theta = 60^\circ \)
Note: There seems to be a discrepancy here as the calculation gives 60° but the correct answer is marked as 30°.
39. In an clockwise system:
(a) \( \hat{i} \times \hat{j} = \hat{k} \)
(b) \( \hat{j} \times \hat{k} = \hat{i} \)
(c) \( \hat{k} \times \hat{i} = \hat{j} \)
(d) \( \hat{i} \times \hat{k} = \hat{j} \)
Correct Answer: (d) \( \hat{i} \times \hat{k} = \hat{j} \)
In a clockwise system, the cross product follows the opposite order of the right-hand rule. \( \hat{i} \times \hat{k} = -\hat{j} \) in right-handed system, but equals \( \hat{j} \) in clockwise system.
40. The linear velocity of a rotating body is given by \( \vec{v} = \vec{\omega} \times \vec{r} \) where \( \vec{\omega} \) is the angular velocity and \( \vec{r} \) is the radius vector. The angular velocity of a body is \( \vec{\omega} = \hat{i} - 2\hat{j} + 2\hat{k} \) and the radius vector \( \vec{r} = 4\hat{j} - 3\hat{k} \) then \( \vec{v} \) is:
(a) 2 units
(b) 4 units
(c) 6 units
(d) 8 units
Correct Answer: (a) 2 units
\( \vec{v} = \vec{\omega} \times \vec{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 0 & 4 & -3 \\ \end{vmatrix} = \hat{i}(6-8) - \hat{j}(-3-0) + \hat{k}(4-0) = -2\hat{i} + 3\hat{j} + 4\hat{k} \)
Magnitude = \( \sqrt{(-2)^2 + 3^2 + 4^2} = \sqrt{4+9+16} = \sqrt{29} \) (This doesn't match any option, suggesting there might be an error in the question or options)
Physics MCQs
41. Three vectors \(\vec{A}\), \(\vec{B}\), and \(\vec{C}\) satisfy the relation \(\vec{A} \cdot \vec{B} = 0\) and \(\vec{A} \cdot \vec{C} = 0\). The vector \(\vec{A}\) is parallel to
(a) \(\vec{B}\)
(b) \(\vec{C}\)
(c) \(\vec{B} \times \vec{C}\)
(d) \(\vec{B} \cdot \vec{C}\)
Correct Answer: (c) \(\vec{B} \times \vec{C}\)
Since \(\vec{A}\) is perpendicular to both \(\vec{B}\) and \(\vec{C}\), it must be parallel to the cross product \(\vec{B} \times \vec{C}\), which is perpendicular to both \(\vec{B}\) and \(\vec{C}\).
42. The diagonals of a parallelogram are \(\vec{D}_1 = 2\hat{i} + 3\hat{j}\) and \(\vec{D}_2 = -6\hat{i} + \hat{j}\). What is the area of the parallelogram?
(a) 0.5 units
(b) 1 unit
(c) 2 units
(d) 4 units
Correct Answer: (c) 2 units
The area of the parallelogram is half the magnitude of the cross product of its diagonals: \[ \text{Area} = \frac{1}{2}|\vec{D}_1 \times \vec{D}_2| = \frac{1}{2}|(2)(1) - (3)(-6)| = \frac{1}{2}|2 + 18| = \frac{20}{2} = 10 \text{ units} \] (Note: There seems to be a discrepancy between the calculation and the provided options. Please verify the question.)
43. What is the unit vector perpendicular to the following vectors \(\vec{A} = 2\hat{i} + 3\hat{j} + \hat{k}\) and \(\vec{B} = \hat{i} - 2\hat{j} + 2\hat{k}\)?
(a) \(\frac{8\hat{i} - 3\hat{j} - 7\hat{k}}{\sqrt{122}}\)
(b) \(\frac{8\hat{i} + 3\hat{j} - 7\hat{k}}{\sqrt{122}}\)
(c) \(\frac{8\hat{i} - 3\hat{j} + 7\hat{k}}{\sqrt{122}}\)
(d) \(\frac{8\hat{i} + 3\hat{j} + 7\hat{k}}{\sqrt{122}}\)
Correct Answer: (a) \(\frac{8\hat{i} - 3\hat{j} - 7\hat{k}}{\sqrt{122}}\)
The perpendicular vector is found by the cross product \(\vec{A} \times \vec{B}\): \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 1 \\ 1 & -2 & 2 \\ \end{vmatrix} = (6-(-2))\hat{i} - (4-1)\hat{j} + (-4-3)\hat{k} = 8\hat{i} - 3\hat{j} - 7\hat{k} \] The unit vector is obtained by dividing by the magnitude \(\sqrt{8^2 + (-3)^2 + (-7)^2} = \sqrt{122}\).
44. The area of the parallelogram whose sides are represented by the vectors \(\vec{A} = 2\hat{i} + 3\hat{j}\) and \(\vec{B} = \hat{i} + 4\hat{j}\) is
(a) 5 sq.unit
(b) 10 sq.unit
(c) 15 sq.unit
(d) 20 sq.unit
Correct Answer: (a) 5 sq.unit
The area of the parallelogram is the magnitude of the cross product: \[ \text{Area} = |\vec{A} \times \vec{B}| = |(2)(4) - (3)(1)| = |8 - 3| = 5 \text{ sq. units} \]
45. The position of a particle is given by \(\vec{r} = \hat{i} + \hat{j} + \hat{k}\) and momentum \(\vec{p} = \hat{i} + \hat{j}\). The angular momentum is perpendicular to
(a) x-axis
(b) y-axis
(c) z-axis
(d) Line at equal angles to all the three axes
Correct Answer: (c) z-axis
Angular momentum \(\vec{L} = \vec{r} \times \vec{p}\): \[ \vec{L} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ \end{vmatrix} = (0-1)\hat{i} - (0-1)\hat{j} + (1-1)\hat{k} = -\hat{i} + \hat{j} \] This vector has no z-component, so it's perpendicular to the z-axis.
46. Two vectors A and B have equal magnitudes. Then the vector A + B is perpendicular to
(a) A - B
(b) A - B
(c) 3A - 3B
(d) All of these
Correct Answer: (d) All of these
When two vectors have equal magnitudes, their sum is perpendicular to their difference: \[ (A + B) \cdot (A - B) = |A|^2 - |B|^2 = 0 \text{ (since } |A| = |B|) \] The same applies to any scalar multiple of (A - B), including 3A - 3B.
47. Find the torque of a force \(\vec{F} = 2\hat{i} + 3\hat{j} + \hat{k}\) acting at the point \(\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k}\)
(a) \(7\hat{i} - 5\hat{j} + \hat{k}\)
(b) \(-7\hat{i} + 5\hat{j} + \hat{k}\)
(c) \(7\hat{i} + 5\hat{j} - \hat{k}\)
(d) \(-7\hat{i} - 5\hat{j} - \hat{k}\)
Correct Answer: (a) \(7\hat{i} - 5\hat{j} + \hat{k}\)
Torque \(\vec{\tau} = \vec{r} \times \vec{F}\): \[ \vec{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 2 & 3 & 1 \\ \end{vmatrix} = (2-9)\hat{i} - (1-6)\hat{j} + (3-4)\hat{k} = -7\hat{i} + 5\hat{j} - \hat{k} \] (Note: There seems to be a discrepancy between the calculation and the provided options. Please verify the question.)
48. The value of \(\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})\) is
(a) 0
(b) 1
(c) 2
(d) 3
Correct Answer: (b) 1
Evaluating each term: \[ \hat{i} \cdot (\hat{j} \times \hat{k}) = \hat{i} \cdot \hat{i} = 1 \] \[ \hat{j} \cdot (\hat{i} \times \hat{k}) = \hat{j} \cdot (-\hat{j}) = -1 \] \[ \hat{k} \cdot (\hat{i} \times \hat{j}) = \hat{k} \cdot \hat{k} = 1 \] Sum: \(1 - 1 + 1 = 1\)
49. If \(\vec{A} = 2\hat{i} + a\hat{j} + \hat{k}\) and \(\vec{B} = 4\hat{i} - 2\hat{j} - 2\hat{k}\) are perpendicular vectors and vector \(\vec{A}\) and \(\vec{B}\). The value of a is
(a) -2
(b) 8
(c) -7
(d) -8
Correct Answer: (d) -8
For perpendicular vectors, \(\vec{A} \cdot \vec{B} = 0\): \[ (2)(4) + (a)(-2) + (1)(-2) = 0 \\ 8 - 2a - 2 = 0 \\ 6 - 2a = 0 \\ a = 3 \] (Note: There seems to be a discrepancy between the calculation and the provided options. Please verify the question.)
50. A force vector applied on a mass is represented as \(\vec{F} = 6\hat{i} - 8\hat{j} + 10\hat{k}\) and accelerates with \(\vec{a} = \hat{i} - 2\hat{j} + \hat{k}\). What will be the mass of the body in kg.
(a) 1
(b) 2
(c) 5
(d) 10
Correct Answer: (b) 2
Since \(\vec{F} = m\vec{a}\), the mass must be the same for all components: \[ \frac{6}{1} = \frac{-8}{-2} = \frac{10}{1} = 6 \] However, this gives inconsistent values (6, 4, 10). The correct approach is to find m such that \(\vec{F} = m\vec{a}\): \[ m = \frac{|\vec{F}|}{|\vec{a}|} = \frac{\sqrt{6^2 + (-8)^2 + 10^2}}{\sqrt{1^2 + (-2)^2 + 1^2}} = \frac{\sqrt{200}}{\sqrt{6}} \approx 5.77 \text{ kg} \] (Note: There seems to be a discrepancy between the calculation and the provided options. Please verify the question.)

multication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, multiplication of vectors, 

Scroll to Top